Assignment 2

Deadline

Friday $17^{\text {th }}$ February, 2017

1. Suppose that p_{1}, p_{2}, p_{3} are distinct primes and that $n, k \in \mathbb{Z}^{+}$with $n=p_{1}^{5} p_{2}^{3} p_{3}^{k}$. Let A be the set of positive integer divisors of n and define a relation \mathcal{R} on A by $x \mathcal{R} y$ if x exactly divides y. If there are 5880 ordered pairs in \mathcal{R}, determine k and $|A|$.
2. Let A be a set with $|A|=n$, and let \mathcal{R} be an equivalence relation on A with $|\mathcal{R}|=r$. Why is $r-n$ always even?
3. A relation \mathcal{R} on a set A is called irreflexive if for all $a \in A,(a, a) \notin \mathcal{R}$. Let \mathcal{R} be a non-empty relation on A. Prove that if \mathcal{R} satisfies two of the following properties - reflexive, symmetric, transitive, then it cannot satisfy the third.
4. Given a set A with n elements and a relation \mathcal{R} on A, let M denote the relation matrix for \mathcal{R}. Then, prove the following:
(a) \mathcal{R} is reflexive iff $I_{n} \leq M$.
(b) \mathcal{R} is symmetric iff $M=M^{T}$
(c) \mathcal{R} is transitive iff $M \cdot M=M^{2} \leq M$
5. Prove that $M(\mathcal{R})=\mathbf{0}$ iff $\mathcal{R}=\phi$.
6. Prove that $M(\mathcal{R})=\mathbf{1}$ iff $\mathcal{R}=A \times A$.
7. Prove that $M(\mathcal{R})^{n}=[M(\mathcal{R})]^{n}$, for all $n \in \mathbb{Z}^{+}$.
8. Let $f: A \rightarrow B$. If $B_{1}, B_{2} \ldots B_{n}$ is a partition of B, prove that $\left\{f^{-1}\left(B_{i}\right) \mid 1 \leq i \leq n, f^{-1}\left(B_{i}\right) \neq\right.$ $\phi\}$ is a partition of A.
9. Suppose that \mathcal{R} and \mathcal{S} are reflexive relations on a set A. Prove or disprove each of these statements:
(a) $\mathcal{R} \cup S$ is reflexive
(b) $\mathcal{R} \cap S$ is reflexive
(c) $\mathcal{R}-S$ is irreflexive $\mathcal{R} \circ S$ is reflexive
10. Suppose that the relation \mathcal{R} is irreflexive, is \mathcal{R}^{2} necessarily irreflexive? Give reasons.
11. Let \mathcal{R} be the relation on the set of all metro stations in Delhi, such that $(a, b) \in \mathcal{R}$ if it is possible to go from stop a to stop b without changing trains. What is \mathcal{R}^{n}, for a positive integer n ?
12. Let n be a positive integer and S a set of strings. Suppose that R_{n} is the relation on S such that $s R_{n} t$ if and only if $s=t$, or both s and t have at least n characters and the first n characters of s and t are the same. That is, a string of fewer than n characters is related only to itself; a string s with at least n characters is related to a string t if and only if t has at least n characters and t begins with the n characters at the start of s. For example, let $n=3$ and let S be the set of all bit strings. Then $s R_{3} t$ either when $s=t$ or both s and t are bit strings of length 3 or more that begin with the same three bits. For instance, $01 R_{3} 01$ and $00111 R_{3} 00101$, but $01 R_{3} 010$ and $01011 R_{3} 01110$. Show that for every set S of strings and every positive integer n, R_{n} is an equivalence relation on S.
13. Let R_{3} be the relation from previous question. What are the sets in the partition of the set of all bit strings arising from the relation R_{3} on the set of all bit strings?
14. Each bead on a bracelet with three beads is either red, white, or blue. Define the relation \mathcal{R} between bracelets as: $\left(B_{1}, B 2\right)$, where B_{1} and B_{2} are bracelets, belongs to \mathcal{R} if and only if B_{2} can be obtained from B_{1} by rotating it or rotating it and then reflecting it.
(a) Show that \mathcal{R} is an equivalence relation.
(b) What are the equivalence classes of \mathcal{R} ?
15. How many equivalence relations are there over the set $\mathrm{A}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$?
16. Given the partition $\mathrm{P}=1,2,3,4,5$ of the set $\mathrm{A}=1,2,3,4,5$, consider R the associated equivalence relation on A. Draw the digraph associated to R and write down the matrix $M(R)$.
17. Prove that if R is a relation and $S \subseteq R$, then S is a relation.
18. If R is a reflexive relation on S, then so is any superset of R inside $S \times S$.
19. The following problems pertain to the relationship of congruence $\bmod n$, defined on Z as follows: DEFINITION: Let a and b be integers and let n be a positive integer. Then $\mathrm{a} \equiv \mathrm{n} \mathrm{b}$ iff $n \mid(a-b)$. Show that $2 \mid(x-y)$ iff x and y have the same parity; i.e., either both x and y are even or both are odd.
20. Determine whether the following relations are reflexive, symmetric, or transitive. Prove your claims. $D=(x, x): x \in S$, the diagonal of $S \times S$, where S is any set.
